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ABSTRACT

Free-viewpoint image synthesis (FVIS) refers to the process of
generating novel viewpoint images from a set of multi-view images.
Most of the conventional FVIS methods were based on image blend-
ing, so that they are subject to a fundamental limitation in resolution:
the output resolution is lower than or at most equal to that of the in-
put images. A reasonable approach to overcome this limitation is to
replace image blending with reconstruction-based super-resolution.
Following this idea, we propose a new FVIS method named as
super-resolution plane sweeping by extending general plane sweep-
ing methods. We also propose an adaptive weighting scheme to
make super-resolution reconstruction operate only on the pixels
where it improve the quality. Experimental results with real images
are presented to show the effectiveness of our method.

Index Terms— Free-viewpoint image, Super-resolution, 3-D
imaging

1. INTRODUCTION

Free-viewpoint image synthesis (FVIS) is the process of combining
multiple images from different viewpoints to generate new images
from arbitrary viewpoints where no camera was located actually.
This technology has attracted much research interest recently [1, 2],
because it has a great potential in providing realistic 3-D visual expe-
riences, which are desired for telecommunication and broadcasting
with sufficient bandwidths in the near future.

Typical FVIS methods consist of two steps: first, some shape or
depth model is estimated from the input images, and then, the input
images are blended together to paint the model, which can finally be
seen from arbitrary viewpoints. However, due to the nature of the
blending operation, this framework has a fundamental limitation in
the resulting resolution; the resolution of the synthesized images is
lower than or at most equal to that of the input images.

To overcome this limitation, a new framework of FVIS that does
not depend only on image blending is necessary. Especially, it is rea-
sonable to incorporate reconstruction-based super-resolution meth-
ods [3] with the FVIS framework, because we have multi-view im-
ages as the input. In this paper, we propose a new FVIS algo-
rithm named as super-resolution plane sweeping that can increase
the resulting resolution by extending general plane sweeping meth-
ods [4, 5, 6]. The success of our method relies on an adaptive weight-
ing scheme that makes super-resolution reconstruction operate only
on the pixels where it improve the quality.
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1.1. Background

Reconstruction-based super-resolution is the process of estimating
an underlying high-resolution image from multiple low-resolution
images of the same scene [3]. The process is formulated as the in-
verse problem of an image formation model, which describes the re-
lation between the high and low resolution images, with some priors
for regularization. However, in general, this technology is not in-
tended to generate images from new viewpoints. Usually, the view-
point of the resulting high-resolution image is selected from those of
low-resolution input images.

As mentioned earlier, traditional FVIS methods were based on
image blending [1, 2], so that they are subject to the fundamen-
tal limitation in resolution. Recently, several researchers have ap-
plied reconstruction-based super-resolution technology to the FVIS
problem to achieve high-resolution view synthesis [7, 8]. These
methods are object-oriented, but not designed to achieve full-frame
super-resolution, because they perform silhouette-based surface re-
construction before or during the process of super-resolution.

In contrast to the prior works [7, 8], our method aims to achieve
full-frame super-resolution of free-viewpoint images. The basic
idea is to apply super-resolution reconstruction to each of the depth
planes in the plane sweeping framework [4, 5, 6]. We also propose
an adaptive weighting scheme, which controls the strength of the
image formation model for each pixel according to the relevance of
the depth assumption. Thanks to this weighting scheme, our method
can naturally extend the standard plane sweeping algorithm and can
improve the resolution even if the depth accuracy is not improved.

2. METHOD

We first describe a general plane-sweeping algorithm as the base-
line method in Section 2.1, followed by our super-resolution plane
sweeping algorithm in Section 2.2.

In this paper, images are represented as 1-D vectors and denoted
by bold-face lower-case letters, e.g. x, where n-th element (pixel) of
x is written as x(n). Image operations, such as projection, down/up-
sampling, are represented as 2-D matrices and denoted by bold-face
upper-case letters, e.g. P. In all of the image operations, bicubic
interpolation is adopted to interpolate pixels.

2.1. Baseline Algorithm of Plane Sweeping

Figure 1 illustrates the configuration. Let yk (k=1,..,4) be the in-
put images from different viewpoints and x be the image to syn-
thesize from a new viewpoint. A set of planes, referred to as the
depth planes, are located in the scene to simultaneously perform
depth evaluation and image synthesis. The depth planes are usually
evaluated in serial order (near-to-far order, typically), thereby, the
entire process is often called as plane sweeping. Here, we describe
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Fig. 1. Configuration.

a general baseline algorithm of plane sweeping based on [4, 5, 6],
which can be easily extended to more general configurations.

Let zd be the location of the depth plane where d is the index of
depth values. At each depth, we calculate

xd =
X

k

diag(ak)Pyk→x
z=zd

yk (1)

md =
X

k,k′

match(Pyk→x
z=zd

yk,P
yk′→x
z=zd yk′). (2)

In the above, Pyk→x
z=zd represents the projection from yk to x via the

depth plane at z = zd. Consequently, Pyk→x
z=zd yk means that yk

is back-projected onto the depth plane and seen from the viewpoint
of x. We assume P

yk→x
z=zd is a square matrix so that the length of

a vector (the number of pixels) is not changed by the projection.
Let ak be a vector of weighting coefficients satisfying

P

k ak(n) =
1, ∀n. The function “match” evaluates the consistency between the
input images at each pixel position where any evaluation criterion
can be used. In this work, we adopt squared differences and apply
shiftable window aggregation (7 × 7 pixels) with normalization by
the texture edge intensity.

In a physical sense, xd is the image from the target viewpoint
under the assumption that the scene is exactly located on the depth
plane at z = zd, and md has pixel-wise evaluation values of how
much this assumption is correct (the smaller, the better). As shown
in Fig. 2, only the regions of the scene that are near to the depth
plane are clearly visible (as if they are focused [6]) in xd, and the
corresponding regions have small values in md.

Given xd and md for all of the depths, the final resulting image
from the target viewpoint is obtained by their integration. The sim-
plest way is to apply the winner-takes-all rule over the depth indices
d for each pixel as

x(n) = xd(n)(n), where d(n) = arg min
d

md(n) (3)

where d can be regarded as a rough depth map, and each pixel of x
is taken from the most relevant xd based on the estimated depth map
d. Examples of x and d are shown in Fig. 3.

2.2. Super-Resolution Plane Sweeping

The baseline plane sweeping algorithm only achieves lower or at
most equivalent resolution compared to the input images, because,
as shown in Eq. (1), the input images are blended together to gener-
ate the target image. In this subsection, we modify the baseline al-
gorithm to achieve higher resolution. Specifically, a reconstruction-
based super-resolution scheme is incorporated into the image syn-

Fig. 2. Examples of xd (left column) and md (right colomn) with
different depths. Best viewed on the screen.

Fig. 3. Examples of d (left) and x (right). Best viewed on the screen.

thesis process at each depth, by replacing Eq. (1) with Eq. (4). Our
algorithm is named as super-resolution plane sweeping.

Let r denote the magnification factor. At each depth, the latent
high-resolution image, xd, whose size is r × r times of the input
images yk, is determined by the following energy minimization:

xd = arg min
xd

(

X

k

Fidelity(xd,yk) + λ · Prior(xd)

)

(4)

where λ is a positive constant to coordinate the relative strengths of
the two terms, and was set to 0.001 in this paper.

The fidelity term evaluates how much the solution is suited to
the image formation model:

Fidelity(xd,yk) = eT
k,d diag(Px→yk

z=zd
wk,d) ek,d (5)

where ek,d = yk − D1/r2Px→yk
z=zd

xd. (6)

Here, ek,d is the difference between the observation (yk) and the
image formation model (D1/r2P

x→yk
z=zd xd), where xd is the latent

high-resolution image from the target viewpoint, Px→yk
z=zd is the pro-

jection from x onto yk via the depth plane at z = zd, and D1/r2 is a
down-sampling matrix with the factor r. The point spreading func-
tion is not explicitly described, but is absorbed in D1/r2P

x→yk
z=zd .

wk,d represents pixel-wise weighting coefficients defined for each
yk, whose definition and meaning are discussed below.

The image formation model, D1/r2P
x→yk
z=zd xd, holds true if and

only if the scene is located on the depth plane. Thereby, the strength
of the fidelity term should be coordinated for each pixel accord-
ing to the relevance of the depth assumption; otherwise, physically-
incorrect models are applied to xd, which produces undesired re-
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sults. For this purpose, we introduce weighting coefficients, whose
vector representation wk,d is given by:

wk,d =
X

k′ 6=k

1

1 + α · match(P
yk→x
z=zd yk,P

yk′→x
z=zd yk′)

(7)

where α is a positive constant. The function “match” is the same
with that of Eq. (2), except that normalization is not performed here.
For the regions that are located on the depth plane at zd, the match-
ing function returns small values, resulting in large weighting co-
efficients. Meanwhile, for the regions that are apart from the depth
plane, the weighting coefficients would be smaller. In this way, wk,d

changes the strength of the fidelity term for each pixel according to
the relevance of the depth assumption. This scheme is referred to as
adaptive weighting.

The remaining problem is how to define the prior terms. Our
purpose is natural extension of the plane sweeping algorithm. The
design scheme here is that only the regions that are located on the
depth plane at zd should be super-resolved, but other regions, i.e.
the regions that are apart from the depth plane, should remain un-
changed from the result of the baseline plane sweeping algorithm.
Consequently, we define the prior term as

Prior(xd) = (xd − Ur2 x̃d)2 (8)

where x̃d is the result of Eq. (1) in the baseline plane sweeping algo-
rithm, and Ur2 is an up-sampling matrix. This prior means that xd

should not be too far from Ur2 x̃d. It can be easily checked that for
the regions apart from the depth plane whose weighting coefficients
are near to zero, minimization of Eq. (4) results in xd ≈ Ur2 x̃d.

Equations (2) and (3) in the baseline algorithm are common to
our algorithm except that md is also up-sampled.

3. EXPERIMENTS

The test images were taken from miniature city dataset of “multi-
view image database of University of Tsukuba, Japan” . The dataset
consists of 81 images whose viewpoints are arranged in a 9 × 9
square grid1. As the input (yk), we used four images from the grid-
points at (0, 5), (4, 5), (4, 9), and (0, 9). These images were down-
sampled to 160×120 pixels beforehand. The output resolution was
set to 320×240 pixels (r = 2.0), but 50 pixels from the boundaries
were excluded from the evaluation. The viewpoint of the output im-
age x was set to (2, 7), where the ground truth image is available.
We set ak(n) = 0.25,∀n, ∀k in Eq. (1), because the target view-
point is located at the center of the four input viewpoints. The energy
of Eq. (4) was minimized by gradient descent method. The software
was implemented with MATLAB.

3.1. Synthesis with a single depth plane

We first demonstrate intermediate results of our algorithm.
The upper row (a–c) of Fig. 4 shows images synthesized with

a single depth plane located at the farthest building. These images
correspond to xd in Eqs. (1) or (4). We compared (a) the baseline
algorithm with bicubic up-sampling, (b) super-resolution with adap-
tive weighting (α = 2.0 in Eq. (7)), and (c) super-resolution without
adaptive weighting (α = 0 in Eq. (7)). The lower row (d–g) of

1The original images are in 24-bit RGB color with 640 × 480 pixels.
They were converted into grayscale and down-sampled with bicubic kernel
for the use in our experiments.

Fig. 4 shows weighting coefficients wk,d for k = 1, ..., 4, respec-
tively, which were used to synthesize (b).

In Fig. 4(a)–(c), only the farthest building is clearly synthesized,
but other regions are blurred. This is what is expected because we
place a single depth plane at the farthest building. However, as
shown in (a), even the farthest building is still blurry when we use the
baseline plane sweeping, due to the nature of image blending. The
effectiveness of our method is obvious from Fig. 4(b); the farthest
building, where the depth plane is located, is clearly super-resolved,
but other parts remain unchanged from those of the baseline algo-
rithm. In other words, super-resolution reconstruction operates only
on the pixels where it improves the quality. However, if the adap-
tive weighting is turned off, as shown in Fig. 4(c), the fidelity term
constraint is enforced even to the regions that are far from the depth
plane, resulting in undesired ringing-like artifacts.

Furthermore, occlusions are properly handled by the adaptive
weighting, because weighting coefficients are defined for each of the
input images as Eq. (7). For example, the lower part of the farthest
building is invisible from two camera due to occlusion, but visible
from other two cameras. The weighting coefficients of this part for
the former two cameras (Figs. 4(f) and 4(g)) are small, but those for
the remaining two cameras (Figs. 4(d) and 4(e)) are still large. As
a result, the lower part of the farthest building is blurry in Figs. 4(a)
and 4(c), but it is clearly visible in Fig. 4(b) thanks to the proper
handling of occlusions.

3.2. Result of plane sweeping

We set 20 depth planes in the scene according to the rule:

1

zd
=

d − 1/2

Nd

„

1

Zmin
− 1

Zmax

«

(d = 1, 2, ..., Nd) (9)

where Zmax and Zmin are the maximum and minimum depths of the
scene, and integrated them using Eq. (3). The resulting images by
the three methods described above are shown in Fig. 5. The PSNRs
are 29.0 dB, 29.4 dB, and 27.5 dB for (a) the baseline algorithm
with up-sampling, (b) super-resolution with adaptive weighting, and
(c) super-resolution without adaptive weighting, respectively. (d) is
the ground truth image for reference. Although the differences in
PSNR values are relatively small, the differences in visual quality
are obvious. The proposed method (Fig. 5(b)) achieves the best qual-
ity among the three, with improved resolution throughout the scene.
Note that the underlying depth map, d in Eq. (3), is common to all
methods, because we did not modify the plane integration process.

If the adaptive weighting is turned-off, severe ringing artifacts
arise as in Fig. 5(c). This is mainly due to the imperfection of depth
estimation. In the synthesis process for each depth plane, most ring-
ing artifacts appear on the regions that are apart from the depth plane,
as shown in Fig. 4(c). If the estimated depth were definitely correct,
such regions would completely be discarded in the layer integration
process of Eq. (3). However, in many applications, depth accuracy
cannot absolutely be guaranteed, and some regions with ringing arti-
facts would remain after the layer integration process, as in Fig. 5(c).
Meanwhile, thanks to the adaptive weighting scheme, our method
does not produce ringing artifacts. Thereby, our method has less
damage from the imperfection of depth estimation.

The main drawback of our method is insufficiency of occlu-
sion handling. As mentioned in Section 3.1, our adaptive weight-
ing scheme (Eq. (7)) is occlusion-sensitive. However, the depth
evaluation (Eq. (2)) and layer-integration (Eq. (3)) procedures does
not properly handle occlusions, causing visible artifacts around the
depth discontinuities in Fig. 5 (b).
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Fig. 4. Synthesis with a single depth plane: (a) the baseline algorithm with up-sampling, (b) super-resolution with adaptive weighting, and
(c) super-resolution without adaptive weighting. (d)–(g) weighting coefficients for y1–y4. Best viewed on the screen.

(a) (b) (c) (d)

Fig. 5. Results of plane sweeping with 20 depths: (a) the baseline algorithm with up-sampling (29.0 dB), (b) super-resolution with adaptive
weighting (29.4 dB), (c) super-resolution without adaptive weighting (27.5 dB), and (d) the ground truth. Best viewed on the screen.

4. CONCLUSION

We proposed a new free-viewpoint image synthesis (FVIS) method
named as super-resolution plane sweeping. The basic idea is to ap-
ply reconstruction-based super-resolution to each of the depth planes
in the plane sweeping algorithm. The key contribution is the adaptive
weighting that can control the strength of super-resolution process
according to the relevance of the depth assumption for each pixel.
The experimental results demonstrated that our method can success-
fully improve the resolution compared to the conventional approach
based on image blending.

Our future work includes several directions. Our algorithm will
be extended to more general configurations, where more than four
input images can be used, and new viewpoints can be located any-
where, not limited on the same plane with the input viewpoints. The
plane integration process should also be improved to handle occlu-
sions properly. Another interesting topic is real-time implementation
of our algorithm using GPGPU technology.
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